Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Wellcome Open Res ; 9: 12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784437

RESUMEN

Background: The COVID-19 pandemic both relied and placed significant burdens on the experts involved from research and public health sectors. The sustained high pressure of a pandemic on responders, such as healthcare workers, can lead to lasting psychological impacts including acute stress disorder, post-traumatic stress disorder, burnout, and moral injury, which can impact individual wellbeing and productivity. Methods: As members of the infectious disease modelling community, we convened a reflective workshop to understand the professional and personal impacts of response work on our community and to propose recommendations for future epidemic responses. The attendees represented a range of career stages, institutions, and disciplines. This piece was collectively produced by those present at the session based on our collective experiences. Results: Key issues we identified at the workshop were lack of institutional support, insecure contracts, unequal credit and recognition, and mental health impacts. Our recommendations include rewarding impactful work, fostering academia-public health collaboration, decreasing dependence on key individuals by developing teams, increasing transparency in decision-making, and implementing sustainable work practices. Conclusions: Despite limitations in representation, this workshop provided valuable insights into the UK COVID-19 modelling experience and guidance for future public health crises. Recognising and addressing the issues highlighted is crucial, in our view, for ensuring the effectiveness of epidemic response work in the future.

2.
J Infect Dis ; 229(1): 59-63, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37402631

RESUMEN

Many countries affected by the global outbreak of mpox in 2022 have observed a decline in cases. Our mathematical model accounting for heavy-tailed sexual partnership distributions suggests that mpox epidemics can hit the infection-derived herd immunity threshold and begin to decline, with <1% of sexually active men who have sex with men infected regardless of interventions or behavioral changes. We consistently found that many countries and US states experienced an epidemic peak, with cumulative cases of around 0.1% to 0.5% among men who have sex with men. The observed decline in cases may not necessarily be attributable to interventions or behavioral changes primarily.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Masculino , Humanos , Homosexualidad Masculina , Conducta Sexual , Brotes de Enfermedades
3.
Value Health ; 27(1): 104-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913921

RESUMEN

OBJECTIVES: The COVID-19 pandemic placed significant strain on many health systems and economies. Mitigation policies decreased health impacts but had major macroeconomic impact. This article reviews models combining epidemiological and macroeconomic projections to enable policy makers to consider both macroeconomic and health objectives. METHODS: A scoping review of epidemiological-macroeconomic models of COVID-19 was conducted, covering preprints, working articles, and journal publications. We assessed model methodologies, scope, and application to empirical data. RESULTS: We found 80 articles modeling both the epidemiological and macroeconomic outcomes of COVID-19. Model scope is often limited to the impact of lockdown on health and total gross domestic product or aggregate consumption and to high-income countries. Just 14% of models assess disparities or poverty. Most models fall under 4 categories: compartmental-utility-maximization models, epidemiological models with stylized macroeconomic projections, epidemiological models linked to computable general equilibrium or input-output models, and epidemiological-economic agent-based models. We propose a taxonomy comparing these approaches to guide future model development. CONCLUSIONS: The epidemiological-macroeconomic models of COVID-19 identified have varying complexity and meet different modeling needs. Priorities for future modeling include increasing developing country applications, assessing disparities and poverty, and estimating of long-run impacts. This may require better integration between epidemiologists and economists.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Control de Enfermedades Transmisibles , Modelos Económicos , Pobreza
4.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098064

RESUMEN

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Incertidumbre , Brotes de Enfermedades/prevención & control , Salud Pública , Pandemias/prevención & control
5.
BMC Med ; 21(1): 85, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882868

RESUMEN

BACKGROUND: The COVID-19 vaccine supply shortage in 2021 constrained roll-out efforts in Africa while populations experienced waves of epidemics. As supply improves, a key question is whether vaccination remains an impactful and cost-effective strategy given changes in the timing of implementation. METHODS: We assessed the impact of vaccination programme timing using an epidemiological and economic model. We fitted an age-specific dynamic transmission model to reported COVID-19 deaths in 27 African countries to approximate existing immunity resulting from infection before substantial vaccine roll-out. We then projected health outcomes (from symptomatic cases to overall disability-adjusted life years (DALYs) averted) for different programme start dates (01 January to 01 December 2021, n = 12) and roll-out rates (slow, medium, fast; 275, 826, and 2066 doses/million population-day, respectively) for viral vector and mRNA vaccines by the end of 2022. Roll-out rates used were derived from observed uptake trajectories in this region. Vaccination programmes were assumed to prioritise those above 60 years before other adults. We collected data on vaccine delivery costs, calculated incremental cost-effectiveness ratios (ICERs) compared to no vaccine use, and compared these ICERs to GDP per capita. We additionally calculated a relative affordability measure of vaccination programmes to assess potential nonmarginal budget impacts. RESULTS: Vaccination programmes with early start dates yielded the most health benefits and lowest ICERs compared to those with late starts. While producing the most health benefits, fast vaccine roll-out did not always result in the lowest ICERs. The highest marginal effectiveness within vaccination programmes was found among older adults. High country income groups, high proportions of populations over 60 years or non-susceptible at the start of vaccination programmes are associated with low ICERs relative to GDP per capita. Most vaccination programmes with small ICERs relative to GDP per capita were also relatively affordable. CONCLUSION: Although ICERs increased significantly as vaccination programmes were delayed, programmes starting late in 2021 may still generate low ICERs and manageable affordability measures. Looking forward, lower vaccine purchasing costs and vaccines with improved efficacies can help increase the economic value of COVID-19 vaccination programmes.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anciano , Análisis Costo-Beneficio , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , África/epidemiología
6.
PLOS Glob Public Health ; 3(3): e0001693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963054

RESUMEN

While safe and efficacious COVID-19 vaccines have achieved high coverage in high-income settings, roll-out remains slow in sub-Saharan Africa. By April 2022, Nigeria, a country of over 200 million people, had only distributed 34 million doses. To ensure the optimal use of health resources, cost-effectiveness analyses can inform key policy questions in the health technology assessment process. We carried out several cost-effectiveness analyses exploring different COVID-19 vaccination scenarios in Nigeria. In consultation with Nigerian stakeholders, we addressed three key questions: what vaccines to buy, how to deliver them and what age groups to target. We combined an epidemiological model of virus transmission parameterised with Nigeria specific data with a costing model that incorporated local resource use assumptions and prices, both for vaccine delivery as well as costs associated with care and treatment of COVID-19. Scenarios of vaccination were compared with no vaccination. Incremental cost-effectiveness ratios were estimated in terms of costs per disability-adjusted life years averted and compared to commonly used cost-effectiveness ratios. Viral vector vaccines are cost-effective (or cost saving), particularly when targeting older adults. Despite higher efficacy, vaccines employing mRNA technologies are less cost-effective due to high current dose prices. The method of delivery of vaccines makes little difference to the cost-effectiveness of the vaccine. COVID-19 vaccines can be highly effective and cost-effective (as well as cost-saving), although an important determinant of the latter is the price per dose and the age groups prioritised for vaccination. From a health system perspective, viral vector vaccines may represent most cost-effective choices for Nigeria, although this may change with price negotiation.

7.
medRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945423

RESUMEN

We evaluate approaches to vaccine distribution using an agent-based model of human activity and COVID-19 transmission calibrated to detailed trends in cases, hospitalizations, deaths, seroprevalence, and vaccine breakthrough infections in Florida, USA. We compare the incremental effectiveness for four different distribution strategies at four different levels of vaccine availability, reflecting different income settings' historical COVID-19 vaccine distribution. Our analysis indicates that the best strategy to reduce severe outcomes is to actively target high disease-risk individuals. This was true in every scenario, although the advantage was greatest for the middle-income-country availability assumptions, and relatively modest compared to a simple mass vaccination approach for rapid, high levels of vaccine availability. Ring vaccination, while generally the most effective strategy for reducing infections, ultimately proved least effective at preventing deaths. We also consider using age group as a practical, surrogate measure for actual disease-risk targeting; this approach still outperforms both simple mass distribution and ring vaccination. We also find that the magnitude of strategy effectiveness depends on when assessment occurs (e.g., after delta vs. after omicron variants). However, these differences in absolute benefit for the strategies do not change the ranking of their performance at preventing severe outcomes across vaccine availability assumptions.

8.
Science ; 378(6615): 90-94, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36137054

RESUMEN

The outbreak of monkeypox across non-endemic regions confirmed in May 2022 shows epidemiological features distinct from previously imported outbreaks, most notably its observed growth and predominance amongst men who have sex with men (MSM). We use a transmission model fitted to empirical sexual partnership data to show that the heavy-tailed sexual partnership distribution, in which a handful of individuals have disproportionately many partners, can explain the sustained growth of monkeypox among MSM despite the absence of such patterns previously. We suggest that the basic reproduction number (R0) for monkeypox over the MSM sexual network may be substantially above 1, which poses challenges to outbreak containment. Ensuring support and tailored messaging to facilitate prevention and early detection among MSM with high numbers of partners is warranted.


Asunto(s)
Brotes de Enfermedades , Homosexualidad Masculina , Mpox , Red Social , Brotes de Enfermedades/prevención & control , Humanos , Masculino , Mpox/epidemiología , Mpox/transmisión , Análisis de Redes Sociales
9.
Bull Math Biol ; 84(6): 62, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35507206

RESUMEN

Polio can circulate unobserved in regions that are challenging to monitor. To assess the probability of silent circulation, simulation models can be used to understand transmission dynamics when detection is unreliable. Model assumptions, however, impact the estimated probability of silent circulation. Here, we examine the impact of having distinct populations, rather than a single well-mixed population, with a discrete-individual model including environmental surveillance. We show that partitioning a well-mixed population into networks of distinct communities may result in a higher probability of silent circulation as a result of the time it takes for the detection of a circulation event. Population structure should be considered when assessing polio control in a region with many loosely interacting communities.


Asunto(s)
Poliomielitis , Poliovirus , Humanos , Conceptos Matemáticos , Modelos Biológicos , Poliomielitis/diagnóstico , Poliomielitis/epidemiología , Poliomielitis/prevención & control , Probabilidad
11.
Sci Rep ; 12(1): 8550, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595824

RESUMEN

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Niño , Femenino , Humanos , Judíos , Estudios Seroepidemiológicos , Reino Unido/epidemiología
12.
Lancet Reg Health Eur ; 17: 100381, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434685

RESUMEN

Background: In settings where the COVID-19 vaccine supply is constrained, extending the intervals between the first and second doses of the COVID-19 vaccine may allow more people receive their first doses earlier. Our aim is to estimate the health impact of COVID-19 vaccination alongside benefit-risk assessment of different dosing intervals in 13 middle-income countries (MICs) of Europe. Methods: We fitted a dynamic transmission model to country-level daily reported COVID-19 mortality in 13 MICs in Europe (Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine). A vaccine product with characteristics similar to those of the Oxford/AstraZeneca COVID-19 (AZD1222) vaccine was used in the base case scenario and was complemented by sensitivity analyses around efficacies similar to other COVID-19 vaccines. Both fixed dosing intervals at 4, 8, 12, 16, and 20 weeks and dose-specific intervals that prioritise specific doses for certain age groups were tested. Optimal intervals minimise COVID-19 mortality between March 2021 and December 2022. We incorporated the emergence of variants of concern (VOCs) into the model and conducted a benefit-risk assessment to quantify the tradeoff between health benefits versus adverse events following immunisation. Findings: In all countries modelled, optimal strategies are those that prioritise the first doses among older adults (60+ years) or adults (20+ years), which lead to dosing intervals longer than six months. In comparison, a four-week fixed dosing interval may incur 10.1% [range: 4.3% - 19.0%; n = 13 (countries)] more deaths. The rapid waning of the immunity induced by the first dose (i.e. with means ranging 60-120 days as opposed to 360 days in the base case) resulted in shorter optimal dosing intervals of 8-20 weeks. Benefit-risk ratios were the highest for fixed dosing intervals of 8-12 weeks. Interpretation: We infer that longer dosing intervals of over six months could reduce COVID-19 mortality in MICs of Europe. Certain parameters, such as rapid waning of first-dose induced immunity and increased immune escape through the emergence of VOCs, could significantly shorten the optimal dosing intervals. Funding: World Health Organization.

13.
Int J Epidemiol ; 51(1): 265-278, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-34458913

RESUMEN

BACKGROUND: Infectious disease outbreaks present unique challenges to study designs for vaccine evaluation. Test-negative design (TND) studies have previously been used to estimate vaccine effectiveness and have been proposed for Ebola virus disease (EVD) vaccines. However, there are key differences in how cases and controls are recruited during outbreaks and pandemics of novel pathogens, whcih have implications for the reliability of effectiveness estimates using this design. METHODS: We use a modelling approach to quantify TND bias for a prophylactic vaccine under varying study and epidemiological scenarios. Our model accounts for heterogeneity in vaccine distribution and for two potential routes to testing and recruitment into the study: self-reporting and contact-tracing. We derive conventional and hybrid TND estimators for this model and suggest ways to translate public health response data into the parameters of the model. RESULTS: Using a conventional TND study, our model finds biases in vaccine effectiveness estimates. Bias arises due to differential recruitment from self-reporting and contact-tracing, and due to clustering of vaccination. We estimate the degree of bias when recruitment route is not available, and propose a study design to eliminate the bias if recruitment route is recorded. CONCLUSIONS: Hybrid TND studies can resolve the design bias with conventional TND studies applied to outbreak and pandemic response testing data, if those efforts collect individuals' routes to testing. Without route to testing, other epidemiological data will be required to estimate the magnitude of potential bias in a conventional TND study. Since these studies may need to be conducted retrospectively, public health responses should obtain these data, and generic protocols for outbreak and pandemic response studies should emphasize the need to record routes to testing.


Asunto(s)
Fiebre Hemorrágica Ebola , República Democrática del Congo/epidemiología , Brotes de Enfermedades/prevención & control , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Vacunación
14.
Lancet Reg Health Eur ; 12: 100267, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34870256

RESUMEN

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine supply conditions. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted age-specific compartmental models to the reported daily COVID-19 mortality in 2020 to inform the immunity level before vaccine roll-out. Models capture country-specific differences in population structures, contact patterns, epidemic history, life expectancy, and GDP per capita.We examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incrementally younger age groups. We explored four roll-out scenarios (R1-4) - the slowest scenario (R1) reached 30% coverage by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy, comorbidity- and quality-adjusted life years, and human capital. Six vaccine profiles were tested - the highest performing vaccine has 95% efficacy against both infection and disease, and the lowest 50% against diseases and 0% against infection. FINDINGS: Of the 20 decision-making metrics and roll-out scenario combinations, the same optimal strategy applied to all countries in only one combination; V60 was more or similarly desirable than V75 in 19 combinations. Of the 38 countries with fitted models, 11-37 countries had variable optimal strategies by decision-making metrics or roll-out scenarios. There are greater benefits in prioritising older adults when roll-out is slow and when vaccine profiles are less favourable. INTERPRETATION: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics, and roll-out speeds. A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust.

15.
BMJ Glob Health ; 6(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34857521

RESUMEN

OBJECTIVES: COVID-19 has altered health sector capacity in low-income and middle-income countries (LMICs). Cost data to inform evidence-based priority setting are urgently needed. Consequently, in this paper, we calculate the full economic health sector costs of COVID-19 clinical management in 79 LMICs under different epidemiological scenarios. METHODS: We used country-specific epidemiological projections from a dynamic transmission model to determine number of cases, hospitalisations and deaths over 1 year under four mitigation scenarios. We defined the health sector response for three base LMICs through guidelines and expert opinion. We calculated costs through local resource use and price data and extrapolated costs across 79 LMICs. Lastly, we compared cost estimates against gross domestic product (GDP) and total annual health expenditure in 76 LMICs. RESULTS: COVID-19 clinical management costs vary greatly by country, ranging between <0.1%-12% of GDP and 0.4%-223% of total annual health expenditure (excluding out-of-pocket payments). Without mitigation policies, COVID-19 clinical management costs per capita range from US$43.39 to US$75.57; in 22 of 76 LMICs, these costs would surpass total annual health expenditure. In a scenario of stringent social distancing, costs per capita fall to US$1.10-US$1.32. CONCLUSIONS: We present the first dataset of COVID-19 clinical management costs across LMICs. These costs can be used to inform decision-making on priority setting. Our results show that COVID-19 clinical management costs in LMICs are substantial, even in scenarios of moderate social distancing. Low-income countries are particularly vulnerable and some will struggle to cope with almost any epidemiological scenario. The choices facing LMICs are likely to remain stark and emergency financial support will be needed.


Asunto(s)
COVID-19 , Países en Desarrollo , Producto Interno Bruto , Humanos , Políticas , SARS-CoV-2
16.
PLoS Med ; 18(10): e1003815, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606520

RESUMEN

BACKGROUND: Multiple Coronavirus Disease 2019 (COVID-19) vaccines appear to be safe and efficacious, but only high-income countries have the resources to procure sufficient vaccine doses for most of their eligible populations. The World Health Organization has published guidelines for vaccine prioritisation, but most vaccine impact projections have focused on high-income countries, and few incorporate economic considerations. To address this evidence gap, we projected the health and economic impact of different vaccination scenarios in Sindh Province, Pakistan (population: 48 million). METHODS AND FINDINGS: We fitted a compartmental transmission model to COVID-19 cases and deaths in Sindh from 30 April to 15 September 2020. We then projected cases, deaths, and hospitalisation outcomes over 10 years under different vaccine scenarios. Finally, we combined these projections with a detailed economic model to estimate incremental costs (from healthcare and partial societal perspectives), disability-adjusted life years (DALYs), and incremental cost-effectiveness ratio (ICER) for each scenario. We project that 1 year of vaccine distribution, at delivery rates consistent with COVAX projections, using an infection-blocking vaccine at $3/dose with 70% efficacy and 2.5-year duration of protection is likely to avert around 0.9 (95% credible interval (CrI): 0.9, 1.0) million cases, 10.1 (95% CrI: 10.1, 10.3) thousand deaths, and 70.1 (95% CrI: 69.9, 70.6) thousand DALYs, with an ICER of $27.9 per DALY averted from the health system perspective. Under a broad range of alternative scenarios, we find that initially prioritising the older (65+) population generally prevents more deaths. However, unprioritised distribution has almost the same cost-effectiveness when considering all outcomes, and both prioritised and unprioritised programmes can be cost-effective for low per-dose costs. High vaccine prices ($10/dose), however, may not be cost-effective, depending on the specifics of vaccine performance, distribution programme, and future pandemic trends. The principal drivers of the health outcomes are the fitted values for the overall transmission scaling parameter and disease natural history parameters from other studies, particularly age-specific probabilities of infection and symptomatic disease, as well as social contact rates. Other parameters are investigated in sensitivity analyses. This study is limited by model approximations, available data, and future uncertainty. Because the model is a single-population compartmental model, detailed impacts of nonpharmaceutical interventions (NPIs) such as household isolation cannot be practically represented or evaluated in combination with vaccine programmes. Similarly, the model cannot consider prioritising groups like healthcare or other essential workers. The model is only fitted to the reported case and death data, which are incomplete and not disaggregated by, e.g., age. Finally, because the future impact and implementation cost of NPIs are uncertain, how these would interact with vaccination remains an open question. CONCLUSIONS: COVID-19 vaccination can have a considerable health impact and is likely to be cost-effective if more optimistic vaccine scenarios apply. Preventing severe disease is an important contributor to this impact. However, the advantage of prioritising older, high-risk populations is smaller in generally younger populations. This reduction is especially true in populations with more past transmission, and if the vaccine is likely to further impede transmission rather than just disease. Those conditions are typical of many low- and middle-income countries.


Asunto(s)
Vacunas contra la COVID-19/economía , COVID-19/economía , Análisis Costo-Beneficio/métodos , Evaluación del Impacto en la Salud/economía , Modelos Económicos , Vacunación/economía , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Análisis Costo-Beneficio/tendencias , Evaluación del Impacto en la Salud/métodos , Evaluación del Impacto en la Salud/tendencias , Humanos , Pakistán/epidemiología , Años de Vida Ajustados por Calidad de Vida , Vacunación/tendencias
17.
Euro Surveill ; 26(39)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34596018

RESUMEN

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Humanos , Pandemias , Cuarentena , Reino Unido/epidemiología
18.
PLoS Comput Biol ; 17(7): e1009162, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252085

RESUMEN

On March 23 2020, the UK enacted an intensive, nationwide lockdown to mitigate transmission of COVID-19. As restrictions began to ease, more localized interventions were used to target resurgences in transmission. Understanding the spatial scale of networks of human interaction, and how these networks change over time, is critical to targeting interventions at the most at-risk areas without unnecessarily restricting areas at low risk of resurgence. We use detailed human mobility data aggregated from Facebook users to determine how the spatially-explicit network of movements changed before and during the lockdown period, in response to the easing of restrictions, and to the introduction of locally-targeted interventions. We also apply community detection techniques to the weighted, directed network of movements to identify geographically-explicit movement communities and measure the evolution of these community structures through time. We found that the mobility network became more sparse and the number of mobility communities decreased under the national lockdown, a change that disproportionately affected long distance connections central to the mobility network. We also found that the community structure of areas in which locally-targeted interventions were implemented following epidemic resurgence did not show reorganization of community structure but did show small decreases in indicators of travel outside of local areas. We propose that communities detected using Facebook or other mobility data be used to assess the impact of spatially-targeted restrictions and may inform policymakers about the spatial extent of human movement patterns in the UK. These data are available in near real-time, allowing quantification of changes in the distribution of the population across the UK, as well as changes in travel patterns to inform our understanding of the impact of geographically-targeted interventions.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles/estadística & datos numéricos , Viaje/estadística & datos numéricos , Algoritmos , COVID-19/epidemiología , COVID-19/prevención & control , Biología Computacional , Actividades Humanas/estadística & datos numéricos , Humanos , SARS-CoV-2 , Medios de Comunicación Sociales/estadística & datos numéricos , Reino Unido
19.
medRxiv ; 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34282421

RESUMEN

BACKGROUND: Countries in the World Health Organization (WHO) European Region differ in terms of the COVID-19 vaccine roll-out speed. We evaluated the health and economic impact of different age-based vaccine prioritisation strategies across this demographically and socio-economically diverse region. METHODS: We fitted country-specific age-stratified compartmental transmission models to reported COVID-19 mortality in the WHO European Region to inform the immunity level before vaccine roll-out. Building upon broad recommendations from the WHO Strategic Advisory Group of Experts on Immunisation (SAGE), we examined four strategies that prioritise: all adults (V+), younger (20-59 year-olds) followed by older adults (60+) (V20), older followed by younger adults (V60), and the oldest adults (75+) (V75) followed by incremental expansion to successively younger five-year age groups. We explored four roll-out scenarios based on projections or recent observations (R1-4) - the slowest scenario (R1) covers 30% of the total population by December 2022 and the fastest (R4) 80% by December 2021. Five decision-making metrics were summarised over 2021-22: mortality, morbidity, and losses in comorbidity-adjusted life expectancy (cLE), comorbidity- and quality-adjusted life years (cQALY), and the value of human capital (HC). Six sets of infection-blocking and disease-reducing vaccine efficacies were considered. FINDINGS: The optimal age-based vaccine prioritisation strategies were sensitive to country characteristics, decision-making metrics and roll-out speeds. Overall, V60 consistently performed better than or comparably to V75. There were greater benefits in prioritising older adults when roll-out is slow and when VE is low. Under faster roll-out, V+ was the most desirable option. INTERPRETATION: A prioritisation strategy involving more age-based stages (V75) does not necessarily lead to better health and economic outcomes than targeting broad age groups (V60). Countries expecting a slow vaccine roll-out may particularly benefit from prioritising older adults. FUNDING: World Health Organization, Bill and Melinda Gates Foundation, the Medical Research Council (United Kingdom), the National Institute of Health Research (United Kingdom), the European Commission, the Foreign, Commonwealth and Development Office (United Kingdom), Wellcome Trust. RESEARCH IN CONTEXT: Evidence before this study: We searched PubMed and medRxiv for articles published in English from inception to 9 Jun 2021, with the search terms: ("COVID-19" OR "SARS-CoV-2") AND ("priorit*) AND ("model*") AND ("vaccin*") and identified 66 studies on vaccine prioritization strategies. Of the 25 studies that compared two or more age-based prioritisation strategies, 12 found that targeting younger adults minimised infections while targeting older adults minimised mortality; an additional handful of studies found similar outcomes between different age-based prioritisation strategies where large outbreaks had already occurred. However, only two studies have explored age-based vaccine prioritisation using models calibrated to observed outbreaks in more than one country, and no study has explored the effectiveness of vaccine prioritisation strategies across settings with different population structures, contact patterns, and outbreak history.Added-value of this study: We evaluated various age-based vaccine prioritisation strategies for 38 countries in the WHO European Region using various health and economic outcomes for decision-making, by parameterising models using observed outbreak history, known epidemiologic and vaccine characteristics, and a range of realistic vaccine roll-out scenarios. We showed that while targeting older adults was generally advantageous, broadly targeting everyone above 60 years might perform better than or comparably to a more detailed strategy that targeted the oldest age group above 75 years followed by those in the next younger five-year age band. Rapid vaccine roll-out has only been observed in a small number of countries. If vaccine coverage can reach 80% by the end of 2021, prioritising older adults may not be optimal in terms of health and economic impact. Lower vaccine efficacy was associated with greater relative benefits only under relatively slow roll-out scenarios considered.Implication of all the available evidence: COVID-19 vaccine prioritization strategies that require more precise targeting of individuals of a specific and narrow age range may not necessarily lead to better outcomes compared to strategies that prioritise populations across broader age ranges. In the WHO European Region, prioritising all adults equally or younger adults first will only optimise health and economic impact when roll-out is rapid, which may raise between-country equity issues given the global demand for COVID-19 vaccines.

20.
Science ; 372(6538)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658326

RESUMEN

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , COVID-19/epidemiología , COVID-19/mortalidad , Vacunas contra la COVID-19 , Niño , Preescolar , Control de Enfermedades Transmisibles , Inglaterra/epidemiología , Europa (Continente)/epidemiología , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Modelos Teóricos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad , Factores Socioeconómicos , Estados Unidos/epidemiología , Carga Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...